七大数学难题排行榜 世界上最难的七大数学题(2)
七大数学难题排行榜
4、黎曼假设
黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。
有些数具有不能表示为两个更小的整数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。
在所有自然数中,这种素数的分布并不遵循任何有规则的模式。著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线z=1/2+ib上,其中b为实数,这条直线通常称为临界线。
这点已经对于开始的1500000000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
5、杨-米尔斯存在性和质量缺口
大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。
该问题的正式表述是:证明对任何紧的、单的规范群,四维欧几里得空间中的杨米尔斯方程组有一个预言存在质量缺口的解。
该问题的解决将阐明物理学家尚未完全理解的自然界的基本方面。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
6、纳卫尔-斯托可方程
纳维-斯托克斯方程,以克劳德-路易-纳维(Claude-LouisNavier)和乔治-盖伯利尔-斯托克斯命名,是一组描述象液体和空气这样的流体物质的方程,简称N-S方程,是世界七大数学难题之一。
因1821年由C.-L.-M.-H.纳维建立和1845年由G.G.斯托克斯改进而得名。
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。
数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。
虽然这些方程是19世纪写下的,我们对它们的理解仍然极少,挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
7、BSD猜想
BSD猜想,全称贝赫和斯维纳通-戴尔猜想,它描述了阿贝尔簇的算术性质与解析性质之间的联系。
给定一个整体域上的阿贝尔簇,猜想它的莫代尔群的秩等于它的L函数在1处的零点阶数;
且它的L函数在1处的泰勒展开的首项系数与莫代尔群的有限部分大小、自由部分体积、所有素位的周期以及沙群有精确的等式关系。
以上是领啦网关于世界上最难的七大数学题及其七大数学难题排行榜的详细讲解,希望本文能给你带来生活上的帮助!