π是有理数还是无理数 人们终于证明了π是无理数
π是有理数还是无理数
本文为你介绍人们终于证明了π是无理数和π是有理数还是无理数的内容,如有不对的地方欢迎指正!
我们都知道圆周率π,π的定义是一个圆的周长和这个圆的直径的比值。
π=圆周长:直径
圆周长=直径×π=2R×π=2πR
我国古代著名数学家祖冲之利用割圆术将π精确计算到小数点后第7位,这种精度领先西方数学500多年。
3.1415926<π<3.1415927
大约在2000多年前,人们就已经发现了圆周率π。从直觉上来看,π显然应该是一个无理数,也就是一个无限不循环小数。
但直觉是不靠谱的,我们必须严格证明才能真正地让所有人信服。为了严格证明π是无理数人类用了整整2000多年的时间!
接下来我们就来探讨一下如何严格证明π是无理数。
首先我们需要了解在实数范围内,除了有理数就是无理数。也就是说,有理数集Q和无理数集的交集是空集∅,并集是实数集R。
有理数是指有限小数或无限循环小数,这里将整数视为有限小数。所有的有理数都可以写成既约整分数的形式,这里将整数视为分母为1的分数。所谓既约整分数就是指分子分母都是整数并且约到最简的分数。
若a∈Q,则a=m/n,这里m、n∈整数集z,且(m,n)=1,n≠0。这里符号(m,n),代表正整数m和n的最大公约数,若(m,n)=1,则称m和n互质。
无理数是指无限不循环小数,任何无理数都不能写成两个整数相除的分数形式。
接下来我们介绍连分数的概念。
我们把形如上图形式的分数称为连分数,这里a0,a1,a2,a3,……,都是整数。
可以证明任何一个有理数都对应某一个有限连分数,任何一个无理数都对应某一个无限连分数。这里证明从略。
例如有理数3.245的有限连分数如下:
有理数有限连分数
无理数√2的无限连分数如下:
上一篇:四川广元是几线城市2023
下一篇:手相有科学依据吗 手相这东西准吗